skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kelly, Linda_W"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Summary Factors that affect the respiration of organic carbon by marine bacteria can alter the extent to which the oceans act as a sink of atmospheric carbon dioxide. We designed seawater dilution experiments to assess the effect ofpCO2enrichment on heterotrophic bacterial community composition and metabolic potential in response to a pulse of phytoplankton‐derived organic carbon. Experiments included treatments of elevated (1000 p.p.m.) and low (250 p.p.m.)pCO2amended with 10 μmol L−1dissolved organic carbon fromEmiliana huxleyilysates, and were conducted using surface‐seawater collected from the South Pacific Subtropical Gyre. To assess differences in community composition and metabolic potential, shotgun metagenomic libraries were sequenced from low and elevatedpCO2treatments collected at the start of the experiment and following exponential growth. Our results indicate bacterial communities changed markedly in response to the organic matter pulse over time and were significantly affected bypCO2enrichment. ElevatedpCO2also had disproportionate effects on the abundance of sequences related to proton pumps, carbohydrate metabolism, modifications of the phospholipid bilayer, resistance to toxic compounds and conjugative transfer. These results contribute to a growing understanding of the effects of elevatedpCO2on bacteria‐mediated carbon cycling during phytoplankton bloom conditions in the marine environment. 
    more » « less